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Note 

On the Limitations of Spherical Harmonics 
for the Solution of Laplace’s Equation 

This note is concerned with the use of the series sum of spherical harmonics to 
solve Laplace’s equation for situations in which either (a) convergence cannot be 
guaranteed, or (b) boundary conditions exist for which there is no corresponding set 
of coefficients that would satisfy them. It is shown, through simple examples, that the 
boundary conditions do not have to be extreme, or particularly unusual, for the 
spherical harmonic sum to fail. It appears that problems arise when the boundary 
surface is aspherical and the likelihood of the spherical harmonic sum failing as a 
solution of Laplace’s equation increases with deviation of the boundary surface from 
spherical shape. For example, it is demonstrated that the spherical harmonic series 
for the solution of a conducting prolate spheroid in an electric field fails when the 
ratio of major to minor axes exceeds \/2. 

I am motivated to write this note because from time to time spherical harmonic 
sums are used as solutions to Laplace’s equation outside their limit of applicability. 
To the author’s knowledge there are three papers [l-3] on just a single subject, 
namely the deformed drop in an electric field, where spherical harmonics have been 
used in good faith, but I believe beyond their limit of applicability, to develop 
solutions for an electrostatic field. I would be surprised if there were not more such 
examples in the literature. 

BACKGROUND 

In spherical polar co-ordinates (r, 8, #), the separated solutions of Laplace’s 
equation may be written: 

w = c (urn,, COS(~() + b,, sin(m#)) Pr(cos 19) 
m,n 

for the solution bounded at r = 0, and 

v/= c @in” cos(mq5) + b,, sin(m#)) Pr(cos 8) 
l?t,” 

(1) 

(2) 

for the solution bounded at r = 00. 
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In Eqs. (1) and (2), a is a suitable scaling for the radial co-ordinate. These 
equations will be found in any of the standard works on mathematical physics (see 
[4,5], for example). However, these works do not stress the limitations of (1) and 
(2). Indeed casual reference to them would tend to leave one with the view that (1) 
and (2) were perfectly general. 

For simplicity, we consider the exterior Dirichlet problem (where the potential is 
defined over a boundary surface enclosing the origin and is bounded for r -+ co) and 
impose cylindrical symmetry. For cylindrical symmetry, the appropriate form of 
Eq. (2) is: 

VI= fj a,P,(cos e> f- 

n+1 

fZ=O ( 1 
(3) 

It is, I believe, the compelling simplicity of (3) that often leads researchers to infer 
a generality it does not possess. We shall now demonstrate through a simple example 
that Eq. (3) cannot be used to solve all cylindrically symmetric potential problems 
(and by implication the same conclusion follows for the more general Eqs. (1) and 
(2)). 

THE PROBLEM 

Figure (1) depicts a cylindrically symmetric but aspherical body. Exterior to the 
body we specify that a scalar potential field exists and has a boundary value on the 
surface of the body derived from an interior point source on the axis of symmetry. 
Clearly the solution is l/R everywhere, R being the distance from source. Normally, 
for such a trivial case, one would not seek solution by considering the boundary 
value of v at the intersection of the surface of some arbitrarily shaped body with the 
Green’s function, l/R. However, in our case this example serves a useful purpose, 
because l/R may be expressed in terms of a spherical harmonic sum about a point 
different from the source, thus 

1 
-= 

R 
P”(COS e) (4) 

(cf. Morse and Feshbach [5]). 
In Eq. (4), a is the separation of source and origin of the spherical harmonic sum 

and 0 is the polar angle in the spherical coordinate system. 
Now the series (4) is uniformly convergent for r > a and convergent for r = a (see 

[5], for example; i.e., exterior to that sphere centred on the origin, and in whose 
surface the source is embedded). However, the series (4) is clearly divergent 
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FIG. 1. A boundary surface configuration (solid line) for which the spherical harmonic sum solution 
of Laplace’s equation may fail. For an external field equivalent to a single source as shown, divergence 
occurs in the strippled region. 

anywhere inside the sphere. So returning to Fig. 1 we see that there is a region outside 
the body, yet inside the sphere where the correct spherical harmonic sum is now 
known to diverge. Note that the boundary value on the surface of the body is 
everywhere smooth, so an “extreme” example has not been chosen by any means. 

Consider now what may happen to the unwary investigator who seeks to develop a 
solution as a spherical harmonic sum to a problem, such as described above. Two 
possibilities may arise: 

(i) The coefficients of the sum are deduced in some approximate manner such 
that the series (2) converges everywhere outside the body. But these coefficients have 
to be wrong because we know that the correct coefficients do not give a convergent 
solution everywhere. Thus the field computed from such coefficients will not be 
correct anywhere. 

(ii) The coefftcients of the sum are deduced correctly but there exist regions 
exterior to the boundary where the solution blows up. 

Further, it follows that, if volume integrals of the potential are required (e.g., to 
calculate a potential energy of a field), these integrals will be wrong in the case of (i) 
and not exist in the case of (ii). 

Neither of the possibilities above is very attractive to the computational physicist 
and what is needed is a method of solution that does not depend upon specific 
geometries (spherical harmonics require a spherical geometry to ensure their success). 

We should note that the interior Dirichlet problem suffers from the same problem 
as may be illustrated by rewriting the series (3) as: 

1 m -= 
R 

ar 
( 1 
?I- n P,(cos 8) 

,Z a 



LIMITATIONS OF SPHERICAL HARMONICS 527 

This time, divergence occurs for I > a and similar reasoning as with the exterior 
problem shows that non-spherical boundary surfaces may have interior regions in 
which the series solution of Eq. (1) blows up. 

A Case Study-The Electrified Drop 

Although it was shown that the spherical harmonic sum may fail for aspherical 
boundary surfaces it is not sufficient to assume that it did fail in [l-3] without 
further study of their particular problem. In this section, we demonstrate that, for one 
of the central results of [2, 31, namely the critical electric field for the instability of a 
conducting drop, the spherical harmonic sum does fail. 

It has -been established theoretically [6-81, experimentally [9], and using a 
numerical model [lo] that a conducting drop of radius, R,, and surface tension, T, 
situated in an electric field, E, (in e.s. units) becomes unstable when E d(R,/T) 
exceeds 1.6. At the instability point, the drop is very nearly spheriodal and has a 
distortion ratio, a/b (the ratio of major to minor axes), of 1.85 f 0.05. This result is 
at variance with those of [2], for which values of E d(R,/T) = 1.9 and a/b = 2.75 
are predicted, and [3], for which a value of 1.745 is given for E d(R,/T). Unfor- 
tunately no explicit value for a/b is given in [3], but we can infer that it is similar to 
that of [2] from their Figs. 1 and 2. If we are to believe the results of [2] or [3], and 
discount the results derived from the spheroidal approximation (implicitly done so in 
[2] and, explicitly, in [3]), then their model for the electric field (the spherical 
harmonic expansion) must have a domain of applicibility that encompasses the 
prolate spheroid of distortion ratio 1.9. We now prove that their model does not have 
such a domain. 

Figure 2 shows that geometry of a conducting polate spheroid of major axis, a, and 
minor axis, b, as referred to in cylindrical coordinate system (r, z), and situated in a 
uniform field, E, parallel to the major axis. Suppose now that the perturbation to the 
external field be represented by the field due to a line charge of variable density, 
o(Z), distributed along the major axis of the spheriod. Then application of elementary 
potential theory (potential = charge/distance) yields the result that the spheriod 
surface is at zero potential if the Fredholm equation 

a 

Ez = 
u(z’) dz’ 

-a &I*( 1 - z’/a’) + (z - z/)2) (6) 

is satisfied. The coefficients, a,, of Eq. (3) follow by application of Eq. (4): 

I 
a 

a, = z’“u(z’) dz’ 
-a (7) 

and, referred to a spherical coordinate system (R, 0), the potential outside the 
spheriod may be written thus: 

WC@)=-ERcosO+ f 11” (3’o(z’)dz’/ $P,(cos~). (8) n=o --(I 
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f E 

FIG. 2. The geometry of a prolate spheriod in an electric field and referred to a cylindrical co- 
ordinate system. 

Clearly a divergent region exists exterior to the spheriod, rendering Eq. (8) inad- 
missable as a solution for the electric potential, if a(.~‘) is non-zero for Iz’I > b. 

Now, the analytical solution of a conducting prolate spheriod in a field is well 
known [5] and easily yields the solution to Eq. (6) as 

u(z) = 
Ez 

ln(( 1 + e)/( 1 - e)) - 2e 

=o otherwise 

for -\/(a’ -b*) ( z < d(a’ - b*) 

(9) 

where e = \/(l - b*/a*); i.e., c(z) is non-zero only between the spheriod foci, varying 
linearly from a positive value at one focus to an equally negative value at the other. 
The details of derivation of a(z) have been omitted, because of the ease of verification 
of the result by substitution of Eq. (9) into Eq. (6). 

The condition that the spherical harmonic sum fails occurs when some of the 
internal charge, u, falls outside the largest incribed sphere (see Eqs. (4) and (8)), 
namely 

&z* -b*) > b 

or 

g,\/2. (10) 

Thus, we have a precise and perhaps surprising result that spherical harmonic sum 
for the field about the prolate spheroid is convergent everywhere outside the spheriod 
only if the distortion ratio does not exceed 1.414. So we are only justified in using the 
spherical harmonic sum for prolate spheriods of distortion ratios less than 1.4 14. 
Because a drop has a much larger distortion at its critical point for stability, it is now 
clear why the results of [2,3] for the critical value of Ed(R,/T) should differ so 
markedly from the accepted value. 
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One might conjecture that, although the spherical harmonic sum fails for the 
prolate spheriod, perhaps it did not fail for the particular drop shapes at instability, 
as calculated in [2,3]. However, the fact that it fails for even the simplest defor- 
mation from spherical shape is very serious and means that such a conjecture cannot 
be sustained. 

CONCLUSIONS 

We must conclude that, although the spherical harmonic sum may be used for the 
solution of either the Dirichlet or the Neumann problems, where the boundary 
surfaces are aspherical, the question of convergence must be addressed with each 
application. For the examples cited here [l-3] we have demonstrated that the correct 
coefficients of the spherical harmonic sum led to a divergent solution for that 
situation central to one of their principal conclusions. 

However, the computational physicist can avoid all of these difficulties as fairly 
robust schemes exist for the solution of the Laplace’s equation (see [ 1 I] for a 
comprehensive review). A method I have used successfully in a number of 
applications [lo] distributes sources just under the boundary surface for the exterior 
problem or just outside for the interior problem and their strengths are calculated so 
as to satisfy the boundary conditions. I believed at the time that the method was 
original, but am comforted to find that there is (at least) one earlier example of its 
use [12]. 

I hope that this note serves to warn future researchers as to the insidiously 
attractive appearance of the spherical harmonic sum for general solution of problems 
in potential theory and that the spherical harmonic sum may fail for aspherical 
boundary surfaces. 
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